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Abstract— Object grasping in cluttered scenes is a widely
investigated field of robot manipulation. Most of the current
works focus on estimating grasp pose from point clouds
based on an efficient single-shot grasp detection network.
However, due to the lack of geometry awareness of the local
grasping area, it may cause severe collisions and unstable
grasp configurations. In this paper, we propose a two-stage
grasp pose refinement network which detects grasps globally
while fine-tuning low-quality grasps and filtering noisy grasps
locally. Furthermore, we extend the 6-DoF grasp with an ex-
tra dimension as grasp width which is critical for collisionless
grasping in cluttered scenes. It takes a single-view point cloud
as input and predicts dense and precise grasp configurations.
To enhance the generalization ability, we build a synthetic
single-object grasp dataset including 150 commodities of
various shapes, and a complex multi-object cluttered scene
dataset including 100k point clouds with robust, dense grasp
poses and mask annotations. Experiments conducted on Yumi
IRB-1400 Robot demonstrate that the model trained on our
dataset performs well in real environments and outperforms
previous methods by a large margin.

I. INTRODUCTION
Robotic grasping is a fundamental problem in the

robotics community and has many applications in in-
dustry and house-holding service. It has shown promising
results in industrial applications, especially for grasping
under structured environments, such as automated bin-
picking [1]. However, it remains an open problem due to
the variety of objects in complex scenarios. Objects have
different 3D shapes, and their shapes and appearances
are affected by lighting conditions, clutter and occlusions
between each other.

Traditionally, the problem of object grasping in clut-
tered scenes is tackled by estimating 6D object pose [2],
[3], [4] and selecting grasp from the grasp database. As
a result, these approaches are not applicable to unseen
objects. In order to generalize to unseen objects, many
recent works [5], [6], [7], [8], [9] conduct grasp pose
detection as rectangle detection in 2D space with CNNs,
and their models perform well on novel objects. However,
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Fig. 1: Comparison with state-of-the-art methods. Instead of
exhaustive searching and evaluating possible grasp candidates
in the point cloud, our method generates possible grasp
candidates efficiently in stage-1 as the single-shot grasp
detection pipeline. Moreover, our model refines low-quality
and classifies noisy grasp candidates in stage-2 base on
discriminative feature representation of the local grasping
area.

planar grasping with 3/4 DoF (degree of freedom)
inevitably results in inflexibility, since the gripper is
forced to approach objects vertically. Besides the DoF
constraint, these works utilize the 2D images as input,
which ignore gripper contact with the object in 3D
space. Some recent works suggest that 3D geometry
structure is highly relevant to grasp quality [10], [11].
PointNetGPD [11] evaluates grasp quality in 3D space
with exhaustive searching in point clouds. S4G [12]
and PointNet++Grasping [13] propose efficient single-
shot grasp pose detection network architectures, while
the results may be noisy and suffer collisions with
surrounding objects. The main reason can be attributed
to: 1) lack of shape awareness of the local contextual
geometry of the gripper closing area; 2) grasping with
max opening width is more likely to cause collisions with
surrounding objects in dense clutter.

Considering the above problems, we propose to detect
grasp poses globally and refine them locally. Single-shot
feature representation helps to avoid exhaustive search-
ing in the point cloud, while it is not able to learn dis-
criminative local feature representation without further
inspection of the local grasping area. For addressing the
limitation, we turn to focus on the local grasping area and
design a two-stage grasp pose refinement network (GPR)
for estimating stable and collisionless grasps from point
clouds. As illustrated in Fig.1, our model predicts coarse
and noisy grasp proposals in the first stage. Then, points
inside the proposals are cropped out and transformed
into local gripper coordinate in the second stage. Finally,
these points are used to encode discriminative local
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feature representation for grasp proposals refinement
and classification. Remarkably, our model takes a single-
view point cloud as input and extends the 6-DoF grasp
with an extra dimension as grasp width, which adjust
gripper opening width and avoid unnecessary collisions.
Furthermore, our two-stage network is trained in an end-
to-end fashion.

For most data-driven methods, it is common to boost
generalization performance with a large-scale dataset.
However, manually annotated 6D grasps can be time-
consuming [14]. Most current works generate grasp anno-
tations based on traditional analysis methods [15], [16] or
physics simulators [17], [18], [19]. In [11], [8], researchers
had built datasets for individual objects, while ignoring
multi-objects in cluttered scenes. [12], [13] propose to
generate grasps in cluttered scenes. However, almost all
of the object models come from the YCB object dataset
[20] may lead to insufficient shape coverage. We collect
150 objects with various shapes and build large-scale
synthetic datasets for both individual objects and objects
in dense clutter. Experiment results show that the model
trained on our dataset performs well in the real robot
platform and gets promising results.

In summary, our primary contributions are:
• An end-to-end grasp pose refinement network for

high-quality grasp pose prediction in cluttered
scenes that detects globally while refines locally.

• Extend 6-DoF grasp with grasp width as a 7-DoF
grasp for improvement of dexterous and collisionless
grasping in dense clutter.

• A densely annotated synthetic single-object grasp
dataset including 150 object models, and a large
scale cluttered multi-object dataset with 100k point
clouds with detailed annotations. We will release the
dataset.

II. RELATED WORK
Deep Learning based Grasp Configuration Detection.

[21] gives a thorough survey of robotic grasping based
on deep learning. Given the object model and grasp
annotations, [22], [2] tackle this problem as template
matching, and the 6-DoF pose retrieving problem. While
template matching methods show low generalization
ability for unknown objects. [10] designs several pro-
jection features as the input of a CNN-based grasp
quality evaluation model. [11] replaces input with di-
rect irregular point cloud and train PointNet [23] for
grasp classification. These methods rely on detailed local
geometry for constructing both collision-free and force-
closure grasps. [5], [6], [7], [24], [25] tackle this problem
as grasp rectangle detection in 2D images from a single
object to multi-object scenarios. While these methods
just perform 3/4-DoF grasp. [12] proposes a single-
shot grasp proposal framework to regress 6-DoF grasp
configurations from point cloud directly. [13] follows a
similar setting, while it generates grasp based on the
assumption that the approaching direction of a grasp is

along the surface normal of the objects. Worth noting
that [8] collects numerous object models for GQ-CNN
training and obtains state-of-the-art performance. Of all
the above methods, GPD can also estimate grasp width
with geometry prior. However, it relies on multi-view
point clouds input. In this paper, we revisit grasp width
as a critical element for grasp configuration and our
model can directly predict high accuracy grasp width.

Grasping Dataset Synthesis. [26], [6], [7] annotate
rectangle representation for grasping detection in images
manually. [27], [28] collect annotations with a real robot.
While an enormous amount of annotated data is needed
for supervised deep learning, therefore manually grasp
configuration annotating is unpractical due to time-
consuming. Given an object with a gripper model and
environment constraints, we are able to synthesize grasp
configurations in two kinds of ways generally. One is
based on analytic methods [29], which derive from force-
closure [15] and Ferrari Canny metric [16]. [30] gives a
detailed survey of these methods. [12], [13], [11], [31], [8],
[14] generate dataset based on this way. Another is based
on physical simulators, such as [18], [19], these simulators
perform better than analytic methods in terms of force
contacts. [32], [33], [34], [35], [36] generate their dataset
using simulated environment.

Deep Learning on Point Cloud Data. PointNet [23] and
PointNet++ [37] are two novel frameworks to directly
extract feature representation from point cloud data.
Many methods [38], [39], [40], [41], [42], [43] extend these
frameworks to point cloud classification, detection and
segmentation. In this paper, we utilize PointNet++ as
the backbone.

III. PROBLEM STATEMENT

In this work, we focus on the problem of planning
a robust two-fingered parallel-jaw grasping based on
point clouds. Our two-stage refinement network takes
the whole cluttered scene as input and outputs dense
grasp poses with high quality and robustness. Some of
the key definitions are introduced here:

Object States: Let xi = (Oi,Ti,γ) describes state
of an object in a grasp scene, where Oi specifies the
surface model, mass and centroid properties of object i,
Ti denotes 6D object pose, γ denotes friction coefficient.

Point Clouds: Let yk ∈ RN×3 represents the point
cloud of the kth scene captured by the depth camera.

Grasps: Let G = [g1, g2, · · ·gm] denotes grasp config-
urations in a cluttered scene. Each grasp configuration is
defined as gi = (o,n, r, ω, c1, c2), where o = (ox, oy, oz)
represents the origin lies at the middle of the line
segment connecting two finger tips, n = (nx, ny, nz) and
r = (rx, ry, rz) denote approach direction and closing
direction of a grasp, w describes grasp width, c1 and c2
denote contact points.

Grasp Metric: We adopt the widely used Ferrari Canny
metric [16] for labelling grasp quality.
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Fig. 2: Overview of our datasets generation procedure. (a)
Example single object models. (b) Example single object
grasps with label Q(g). For each object, 15 grasps are sampled
for visualization. The colors from red to green represent Q(g)
from low to high. (c) Illustration of a cluttered scene. (d)
Example grasps in a cluttered scene.

IV. DATASET GENERATION
In this section, we introduce our dataset generation

method for grasp poses annotation for both individual
objects and objects in dense clusters. The overall pipeline
is illustrated in Fig.2. We take the following procedure
to obtain dense grasp annotations. Firstly, we label
single-object grasp annotations and then match grasp
annotations into cluttered scenes according to the 6D
object pose. Finally, we apply collision filtering for all
the grasp configurations.

A. Single-object grasp dataset Generation
For single-object grasp dataset generation, we collect

150 objects of various shapes and categories. Half of these
objects come from the BOP-Challenge dataset and YCB-
Video dataset [20], others are collected from the internet.

Given a specific object model O, the target is to
generate dense grasp annotations including grasp con-
figuration g and corresponding grasp metric mentioned
above. First, N candidate contact points p1,p2, · · ·pN

are sampled on object surface model with outward
normals n calculated. Based on force-closure principle,
k antipodal grasp directions are then sampled inside the
friction cone of point pi. Each antipodal grasp candidate
gi will be classified as a positive grasp candidate gT

i , if
satisfies rules as follows: 1) At least one antipodal contact
point c2 is found on object backward surface; 2) Force-
closure property. Otherwise, antipodal grasp candidate
is classified as negative grasp gF

i .
Second, for each positive antipodal grasp candidate gT

i

of a contact point pT
i , collision check is applied between

gripper and object. Those grasp candidates failed in
collision check will be classified as negative grasps gF

i .
If no positive antipodal grasp candidate is reserved, the
corresponding sampled point is classified as a negative
point pF

i , which means an unsuitable contact point.
Third, the grasp metric for each reserved positive grasp

candidates is calculated by Ferrari Canny metric as Q(g).
Finally, we apply Non-maximum Suppression algo-

rithm (NMS) for pruning redundant grasps. Distance

Fig. 3: An example shows points mask label M(p) in our
multi-object grasp dataset. Points in light blue denote positive
grasp contact point. Points in dark blue denote negative
contact point due to collision. Points in orange denote
unsuitable contact points on foreground objects.

between two sampled grasp g1 and g2 is calculated by
following equation:
D(g1, g2) = β1 · ||((c1 + c2)/2|g1)− ((c1 + c2)/2|g2)||2

+ β2 · arccos(|(γ|g1) · (γ|g2)|)/π
+ β3 · arccos((n|g1) · (n|g2))/π.

(1)

n,γ are set to 16384, 0.3. β1,β2, and β3 is set to 1,
0.03, and 0.03 in our experiments. For all the objects
O1,O2, · · · On, the output annotations are denoted as
{gi,Q(gi) | O1,O2, · · · On}. Examples of our single-
object grasp dataset are shown in Fig.2 (b).

B. Multi-object Grasp Dataset Generation
To simulate densely cluttered scenes for the multi-

object grasp dataset, we adopt the following procedures
using [18]:

First, m objects are randomly sampled, then these
sampled objects are initializing with random poses, and
falling into a static bin successively in the simulator, as
shown in Fig.2(c).

Then, the 6D object pose will be recorded after all
sampled objects falling into the bin and reaching stable
states. Each unsuitable grasp point pFi for each object
Oi will be added into negative point set pneg. Then we
apply collision check for each grasp gj of each object
Oi obtained by single-object grasp generation. If no
collision occurs, contact points c1, c2 of grasp gi will be
added into positive grasp contact points set ppos, and
the corresponding grasp annotation will be added into
positive grasp set gpos. Otherwise, the point will be added
into negative grasp contact points set pneg.

Point cloud yk within the bin is cropped for generating
points label and mask which is defined as follows:

L(pi) = [n,γ, ω,Q(gi)],

M(pi) = [I
(
Q(gi)

)
],

I
(
Q(gi)

)
=

{
1 if Q(gi) > 0,

0 otherwise.

(2)

Where I denotes Indicator function for generating
points mask. For each point pi ∈ ppos, a KD-Tree
search is applied to find the nearby points pRi =
[pi1 , pi2 , · · · pik |pi, yk, R] among yk with query radius R.
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Moreover, each point in pRi will be broadcast with the
same label L(pi) and mask M(pi). Finally, each point
will only reserve the corresponding label and mask with
the highest grasp score. For each point pi ∈ pneg, the
similar process will be done. An Example is shown in
Fig.3.

V. GRASP POSE REFINEMENT NETWORK

In this section, we present our proposed two-stage
grasp pose refinement network (GPR) for grasp pose
detection in cluttered scenes. The overall structure is
illustrated in Fig.4.

A. Grasp Proposal Generation
Existing 6-DoF grasp pose detection methods could

be classified into one-stage and two-stage methods. One-
stage methods[24], [25], [31], [8], [12], [13] are gen-
erally faster but directly predict grasp pose without
local geometry awareness. Two-stage methods[5], [6], [7]
mostly depend on anchor mechanism[44] developed on
2D object detection, which generate proposals firstly and
then refine the proposals and confidences in the second
stage. However, directly applying anchor mechanism for
predicting grasp pose in 3D space is non-trivial due to
the huge search space and irregular format of the point
cloud.

Therefore, we propose to directly estimate grasp pose
in a bottom-up manner to avoid exhaustive searching
in 3D space with 3D rotation inspired by [12], [13]. We
predict mask and coarse 7-DoF grasp proposal for each
point in the scene, as shown in stage-1 sub-network of
Fig.4.

Feature representations and segmentation. We design
the backbone network based on the PointNet++ [37],
which is a robust learning model for dealing with sparse
point cloud and non-uniform point density. We utilize the
PointNet++ network with multi-scale grouping strategy
as the backbone.

Given the point-wise feature encoded by the backbone
network, we append two head ahead to our backbone: one
segmentation head for predicting grasp contact points
mask, and one grasp pose regression head for generating
7-DoF grasp proposals. We utilize focal loss [45] to
handle the severe imbalance problem for grasp contacts
segmentation, as shown in Fig.4.

Bin-based grasp pose regression. It is difficult to
regress 7-DoF grasp configuration directly, which has
been proved in previous literature [46], [42], [43]. There-
fore, we develop bin-based regression method similar
as [42]. Specifically, a 7-DoF grasp is represented as
g = (o,n, r, ω), where o = (x, y, z) denotes the grasp
center, n and r denote approach and closing directions
of the gripper, ω denotes gripper opening width. Gripper
direction regression is converted to angle prediction, as
show in Fig.5. For angle prediction, gripper approach
vector is denoted by θ1 ∈ [0, 2π] and θ2 ∈ [0, π/2] jointly,

while finger closing direction is projected onto X-Y plane,
and denoted by θ3 ∈ [−π/2, π/2].

We divide a target angle of point p, e.g. θp1 , into
n bins with uniform angle δθ1 , and calculate the bin
classification target binp

θ1
and residual regression target

respθ1 within the classified bin. The angle loss for θ1,
θ2 and θ3 consists of two terms, one term for bin
classification and another for residual regression within
the classified bin. The target angle could be formulated
as follows:

binp
θ

θ∈{θ1,2,3}
=

⌊
θp − θs

δθ

⌋
,

respθ
θ∈{θ1,2,3}

=
1

δθ

(
θp − θs −

(
binp

θ · δθ +
δθ
2

))
.

(3)

Where θp (θ ∈ {θ1, θ2, θ3}) is the target grasp angle of
a specific grasp contact point p, θs denote the starting
angle, binp

θ is the ground-truth bin assignment, respθ is
the residual value for further angle regression within
the assigned bin, and δθ is the unit bin angle of θ for
normalization.

For grasp center and grasp width prediction, we adopt
the following formulation:

binp
u

u∈{x,y,z,ω}
=

⌊
up − upc + Su

du

⌋
,

respu
u∈{x,y,z,ω}

=
1

du

(
up − upc + Su −

(
binp

u · du +
du
2

))
.

(4)

Where (xp, yp, zp) is the coordinates of an interest grasp
contact point, ωp is the grasp width, (xpc , ypc , zpc) and
ωpc is the grasp center coordinates and grasp width
of its corresponding grasp configuration. The binp

u and
respu (u ∈ {x, y, z, ω}) are ground-truth bin assignment
and residual location within the assigned bin, and du
is the bin length for normalization. Su denotes the
corresponding search range.

The overall loss of grasp proposal generation sub-
network could be formulated as follows:

Lp
grasp =

∑
u∈{x,y,z,ω,θ1,2,3}

(Fcls(b̂in
p

u,binp
u)

+ Freg(r̂espu, respu)),

Lstage-1 =
1

Npos

∑
p∈pos

Lp
grasp +

∑
Lp

focal(yt).

(5)

The loss Lstage-1 includes two terms, Lgrasp for grasp
poses prediction and Lfocal for grasp contact points
segmentation. Where Npos is the number of positive
grasp contact points, yt is the probability of point p

as a positive grasp contact point. Where b̂in
p

u and r̂espu
are the predicted bin assignment and residual of point
p, binp

u and respu are corresponding ground-truth. Fcls
denotes the classification loss of bin assignment, and Freg
denotes regression loss for residual prediction.
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Fig. 4: Overview of our GPR network for grasp pose detection and refinement in point cloud. Stage-1 for generating 7-DoF
grasp proposals. Stage-2 for refining grasp proposals with further geometry awareness of local grasping area.

k

p

h

o Y

Z

X

q 1

q 2

q 3

(a)

h
res

ko

h

o

k
0

o

1

q 2

q 1

o

0

q 3 p

2

1

(b)

Fig. 5: An illustration of bin-based angle regression. (a) The
grasp approach vector n is denoted by azimuth angle θ1 and
elevation angle θ2, closing vector r is projected to X-Y plane
and denoted by azimuth angle θ3. (b) Examples show range
of azimuth and elevation angle are split into a series of bins,
where res denotes normalized residual value within the bin.

B. Grasp Proposal Refinement
Non-maximum suppression and Grasp proposal sam-

pling. Since sub-network for stage-1 generates one pro-
posal per point, there are a larger number of proposals
around ground-truth grasps. Non-maximum suppression
(NMS) is applied to select the local maximum.

Region grouping and grasp canonical transformation.
Given the grasp proposals generated by stage-1, point
clouds within the gripper closing area are cropped
out for further feature representation learning. Unified
local coordinates are utilized to eliminate the ambiguity
caused by absolute coordinate for objects with various
poses and locations. Specifically, we adopt canonical
transformation for points within the gripper closing area
as shown in Fig.4. We set Approaching, Closing, and
Orthogonal directions of the gripper as X, Y, and Z
axes respectively, and the origin locates at the gripper
bottom center. In experiments, the gripper closing area
is enlarged by a scalar ϵ to capture more contextual
information, which helps for proposal refinement.

Feature learning for grasp proposal refinement. Af-
ter proposal canonical transformation, fine-grained local
features within the proposals will be learned with the
following steps.

First, for each point within the enlarged 3D grasp
proposal, we obtain its canonical coordinate p̃ = T (p) =

(xp̃, yp̃, zp̃) and corresponding global semantic feature
learned by stage-1. Then, each inside point p̃ and
corresponding feature fp of each grasp proposal are
combined. Finally, the concated feature of each point
inside the proposal are fed into a point cloud encoder to
fuse both the global and local feature. Thus, we can
obtain discriminative feature representation for grasp
proposal refinement with grasp width and confidence.

The overall loss for training grasp proposal refinement
sub-network is similar as depicted in grasp proposal
generation sub-network.

VI. EXPERIMENTS
We evaluate our GPR network both in simulation

and the Yumi IRB-1400 Robot platform. In simulation
experiments, ablation studies show our model predicts
high precision grasp configurations. In the real robot
platform, experimental results show that our model has
good generalization ability.

A. Implementation Details
For each point cloud grasp scene, 16384 points are

sampled as input. The learning rate is set to 0.02 at
start, and it is divided by 10 when the error plateaus.
During the training phase, 256 proposals are sampled
after proposals NMS for stage-2, while 100 proposals for
inference. Of all the 150 object models, 120 objects are
selected for training. Of all the 100k point clouds, 80k
point clouds as training data.

B. Simulation Experiments
1) Extend 6-DoF Grasp with Grasp Width: We first

evaluate our proposed method in terms of grasp width.
To demonstrate the high precision prediction of grasp
width, we show a quantitative analysis of over 20k scene
with around 2M synthetic grasps. In our experiments,
we define the measurement for grasping width as the
absolute difference between the predicted grasp width
and the ground-truth grasp width |ω − ω̂|. We set
4 groups threshold for a comprehensive evaluation of
grasp width prediction. For evaluation of each threshold,
each absolute grasp width difference smaller than the
threshold is classified as positive, otherwise negative.
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Fig. 6: (a) Ground-truth and predicted grasp width distribu-
tion. (b) An example shows adaptive grasp width in a clutter
scene.

TABLE I: Comparison of Grasp Width Accuracy
Grasp Width

Threshold(mm)
Accuracy (%)

stage-1 stage-2
2.5 42.0 52.5
5.0 76.0 82.2
7.5 87.5 90.2
10.0 92.9 93.1

We select 100 proposals after NMS operation and filter
out the negative samples. Experimental results shown in
Tab.I demonstrate that our model can estimate high pre-
cision grasp width, and achieves 82.2% accuracy under
5 mm threshold. Fig.6(a) shows the overall grasp width
distribution in our dataset. Grasp width is uniformly
divided into 8 groups with an interval of 5 mm. While
only 1/4 of all lie in the range [3.5, 4] cm. Grasping
with max opening width can be problematic in cluttered
scenes, because it may lead to collisions with surrounding
objects. Fig.6(b) shows an example that adaptive grasp
width is critical for dexterous grasping in cluttered
scenes.

2) One-stage VS. Two-stage: To illustrate the effec-
tiveness of our proposed grasp pose refinement network,
we evaluate the generated grasp proposals quality for
both the two stages.

As shown in Tab.I, grasp width accuracy after re-
finement has 25% and 8% improvement respectively
over stage-1 under threshold 2.5 mm and 5 mm. The
improvement gets saturated with higher tolerances. For
grasp pose accuracy, we adopt the distance measurement
of grasp pose as in Eq.1. For evaluation of predicted
grasp gp, gp is classified as positive, when D(gp, gt) is
smaller than the predefined threshold, otherwise nega-
tive. Experimental results shown in Tab.II demonstrate
that proposals after refinement outperform stage-1 by a
large margin.
C. Robotic Experiments

We validate the reliability and efficiency of our pro-
posed GPR network in ABB Yumi IRB-1400 robot and

TABLE II: Comparison of Grasp Pose Accuracy
Grasp Pose
Threshold

Accuracy (%)
stage-1 stage-2

0.005 25.3 52.5
0.01 29.1 61.2
0.015 31.8 63.9
0.02 33.5 65.2

(a) (b)
Fig. 7: Real setting of our robotic grasping experiments. (a)
Cluttered scene grasping experiment setup with ABB Yumi
robotic arm. (b) Objects used in our robotic experiments.
Left one shows novel objects which are absent in the training
dataset, right one shows similar objects.

a PhoXi industrial sensor. Objects are presented to the
robot in dense clutter as shown in Fig.7(a). We keep
a similar setting as in the simulation environment: 1)
Camera is placed on top of the bin about 1.3 m; 2) Point
cloud within the bin is cropped out for input data. 20
similar and 20 novel objects are selected for testing the
generalization ability of our proposed network, as shown
in Fig.7(b).

We compare GPR to two state-of-the-art, open-
sourced 6D grasp baselines, GPD [10] and PointNetGPD
[11]. We train GPD and PointNetGPD with their default
setting on our dataset with the code they released.

The experiment procedure is as follows: 1) 10 of 20
objects are random sampled out, and then poured into
the bin; 2) The robot attempts multiple grasps until all
objects are grasped or 15 grasps have been attempted; 3)
10 times testing for each algorithm. The result is shown
in Tab.III. Success Rate (SR) and Completion Rate (CR)
are used as the evaluation metrics.

TABLE III: Results of Clutter Removal Experiments

Method Similar objects Novel objects
SR CR SR CR

GPD (3 channels) [10] 60% 84% 50% 66%
GPD (15 channels) [10] 52.7% 78% 36% 54%

PointNetGPD (3 classes)[11] 64.6% 84% 54.8% 80%
Ours 78.3% 94% 69.2% 90%

As shown in Tab.III, our method outperforms baseline
methods in terms of Success Rate, Completion Rate,
which demonstrates the superiority of our methods. In
our observation, our algorithm can get better perfor-
mance in terms of collisions with surrounding objects
and stable grasp configuration.

VII. CONCLUSIONS

In this paper, we proposed an end-to-end grasp pose
refinement network for fine-tuning low-quality and fil-
tering noisy grasps, which detects globally and refines
locally. Meanwhile, we build a single-object grasp dataset
which consists of 150 objects with various shapes, and
a large-scale dataset for cluttered scenes. Experiments
show that our model trained on the synthetic dataset
performs well in real-world scenarios and achieves state-
of-the-art performance.
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